If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84x^2+76x+16=0
a = 84; b = 76; c = +16;
Δ = b2-4ac
Δ = 762-4·84·16
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-20}{2*84}=\frac{-96}{168} =-4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+20}{2*84}=\frac{-56}{168} =-1/3 $
| (m-)=6m-48 | | 27-2x=15+4x | | 5(x-2)=3(x+7) | | 8x+7=32-2x | | 3=11-2v | | 3^(2x+1)*3^x=243 | | 3.25x+5=3.5x+2 | | -7(x-9)=9x-33 | | -9(x+6)=-207x | | 2c-15=1 | | (11x-6)*(5x+8)=0 | | 24/18=x/27 | | t+56=79 | | 3x+6-x=12 | | 5(1=2x)=50 | | 15.95x=13.95x+8 | | 1/f=1/12+1/20 | | (n-1/5)+(n-1/6)=(n^2-n/2) | | 5x+2.9=8x=0.2 | | 5x=-0.6 | | 8(2x+1)=6x+8+8x+6 | | (11x-6)+(5x+8)=0 | | 4(x+5)=-6x-20 | | (2x-1)2=-49 | | -7x+3.6=-8=3.2 | | -5-4x=3x-11 | | 3(x-1)=10x+4 | | F=-4x+3 | | 11=14-3r | | 2(q−43)=94 | | (11x-6)x(5x+8)=0 | | 13=4t-3 |